
Intro to Java III:
Objects

CS 1025 Computer Science Fundamentals I

Stephen M. Watt
University of Western Ontario

Our Previous Program

class Primes {
public static boolean[] makeSieve(int n) {

boolean[] marks = new boolean[n];
for (int i = 0; i < n; i++) marks[i] = true;
return marks;

}

public static void doCancel(boolean[] marks, int n) {

if (! marks[n]) return; // ! means “not”
for (int k = 2*n; k < marks.length; k += n) marks[k]=false;

}}
public static void printPrimes(boolean[] marks) {

for (int i = 2; i < marks.length; i++)
if (marks[i]) System.out.print(“ “ + i);

}

public static void main(String[] args) {

boolean[] sieve = makeSieve(100);
for (int i = 2; i < sieve.length; i++) doCancel(sieve, i);

System.out.print(“Primes:”);
printPrimes(sieve);
System.out.println(“.”);

}

}

Classes as Collections of Related Things

• A class may declare variables as well as functions.
The variables may be used by the functions
if the word “static” is left off their declarations, e.g.

class Barn {
int numChickens = 0;
int numCows = 0;

public void addChickens(int n) { numChickens += n; }
public void addCows(int n) { numCows += n; }

public int numFeet() {
return 4*numCows + 2*numChickens;

}
public int numEyes() {

return 2*(numCows + numChickens);
}

}

Using the Class -- Objects
• Notice that the Barn class did not have a main.

• We must therefore use it from another class that does have one.
• To do this we declare a variable of type Barn

and use new to make one, e.g.

Barn myBarn = new Barn();

• The functions are called using “dot” notation:

myBarn.addChickens(4);
myBarn.addCows(3);

int nEyes = myBarn.numEyes();
System.out.println(“Number of eyes = “, nEyes);

• myBarn is then said to be an object of type Barn.

• Its functions are called methods.

Multiple Objects

• There can be several independent objects with the
same type in the program.

Barn myBarn = new Barn();
Barn yourBarn = new Barn();
Barn fredsBarn = new Barn();

• Several variables may refer to the same object:

Barn bigRedBarn = yourBarn;

No matter which name is used, the same object is affected.

bigRedBarn.addChickens(3); // affects yourBarn

Abstraction

• Objects allow you to provide programs without
revealing how the data is represented.

• For example, you can represent a complex number
in either polar (r, theta) or Cartesian (x, y) form

and hide this from the user!and hide this from the user!

• This is an important idea -- it lets you change your mind.

You can change the class and the programs that are using it
still keep working.

• This is called “information hiding” or “data abstraction.”

Constructors

• Sometimes you want to initialize some of the variables
differently for each object you construct.

• For this “constructors” are used.

• These are special methods with the same name as the class.

class Complex {
private double _x, _y;private double _x, _y;
public Complex(double x, double y) {_x = x; _y = y; }

public double x() { return _x; }
public double y() { return _y; }
public double r() {

return Math.sqrt(_x*_x + _y*_y);
}
public double theta() {

return Math.atan2(_y, _x);
}

}

Public vs Private

• Class variables are sometimes called “fields.”

• Constructors, fields and methods may be
declared either public or private.

• Only public items can be accessed from outside
the class using the dot notation.

